11static constexpr float link_0_length = 0.036;
12static constexpr float link_1_length = 0.03085;
13static constexpr float link_2_length = 0.05225;
16static constexpr float transmission_0 = 6.f / 44.f;
17static constexpr float transmission_1 = 1.f / 7.9375f;
18static constexpr float transmission_2 = 1.f / 7.9375f;
49static constexpr float motor_torque_limit = 5.0f;
62static constexpr Limits<float> joint_0_vel_limits{-10.0, 10.0};
63static constexpr Limits<float> joint_1_vel_limits{-10.0, 10.0};
70 const auto theta_0 = joint_angles.at(0);
71 const auto theta_1 = joint_angles.at(1);
72 const auto theta_2 = joint_angles.at(2);
74 const auto x1 = link_0_length * sin(theta_0);
75 const auto y1 = link_0_length * cos(theta_0);
78 const auto x2 = x1 + link_1_length * cos(theta_1) * sin(theta_0);
79 const auto y2 = y1 + link_1_length * cos(theta_1) * cos(theta_0);
80 const auto z2 = z1 + link_1_length * sin(theta_1);
82 const auto x3 = x2 + link_2_length * cos(theta_1 + theta_2) * sin(theta_0);
83 const auto y3 = y2 + link_2_length * cos(theta_1 + theta_2) * cos(theta_0);
84 const auto z3 = z2 + link_2_length * sin(theta_1 + theta_2);
95 const auto x =
pos.at(0);
96 const auto y =
pos.at(1);
97 const auto z =
pos.at(2);
99 const auto theta_0 = std::atan2(y, x);
101 const auto radius = x * x + y * y + z * z;
102 const auto theta_1 = std::acos(
103 radius - link_1_length * link_1_length - link_2_length * link_2_length) /
104 (2 * link_1_length * link_2_length);
106 return {theta_0, theta_1, theta_1};
111 const auto phi_0 = motor_vars.at(0);
112 const auto phi_1 = motor_vars.at(1);
114 const auto theta_0 = phi_0 * transmission_0;
115 const auto theta_1 = phi_1 * transmission_1;
116 const auto theta_2 = phi_1 * transmission_2;
118 return {theta_0, theta_1, theta_2};
123 const auto theta_0 = joint_vars.at(0);
124 const auto theta_1 = joint_vars.at(1);
127 const auto phi_0 = theta_0 / transmission_0;
128 const auto phi_1 = theta_1 / transmission_1;
129 return {phi_0, phi_1};
152 const auto tau_0 = joint_taus.at(0);
153 const auto tau_1 = joint_taus.at(1);
154 const auto tau_2 = joint_taus.at(2);
156 const auto torque_0 = tau_0 * transmission_0;
157 const auto torque_1 = tau_1 * transmission_1 + tau_2 * transmission_2;
159 return {torque_0, torque_1};
164 const auto torque_0 = motor_torques.at(0);
165 const auto torque_1 = motor_torques.at(1);
167 const auto tau_0 = torque_0 / transmission_0;
169 const auto tau_1 = 0.5f * torque_1 / transmission_1;
170 const auto tau_2 = 0.5f * torque_1 / transmission_2;
172 return {tau_0, tau_1, tau_2};
182 static constexpr float discouraging_stiffness = 0.0;
187 return {joint_0_d_t, joint_1_d_t, 0.0f};
constexpr float convert_angular_units(float ang, const AngleUnits curr_unit, const AngleUnits desr_unit)
Converts an angle from one unit to another.
Class that treats a std::vector as a matrix and implements simple operations.
std::vector< float > joint_thetas
std::vector< float > motors_to_joints(std::vector< float > motor_vars)
std::vector< float > inverse_kinematics(std::vector< float > pos)
Performs inverse kinematics for the robot thumb.
std::vector< float > phi_to_theta(std::vector< float > motor_phis)
Matrix spatial_jacobian(std::vector< float > joint_thetas)
std::vector< float > theta_to_phi(std::vector< float > joint_thetas)
std::vector< float > torque_to_tau(std::vector< float > motor_torques)
std::vector< float > joints_to_motors(std::vector< float > joint_vars)
std::vector< float > tau_to_torque(std::vector< float > joint_taus)
std::vector< float > forward_kinematics(std::vector< float > joint_angles)
Performs forward kinematics for the robot thumb.
std::vector< float > soft_limit_torques(std::vector< float > joint_thetas)
Limit struct to store upper and lower limits.
T over_limits(T compare) const